وبلاگ

توضیح وبلاگ من

پایان نامه ارشد رشته مکانیک طراحی کاربردی: بررسی کمانش حرارتی تیر FGM با دو لایه پیزوالکتریک


کمانش ناشی از تغییرات دمایی یکی از عوامل اصلی در تخریب سازه های مهندسی می باشد، بنابراین بررسی کمانش ناشی از بارهای حرارتی در سازه ها اهمیت ویژه ای می یابد. کنترل کمانش تیرها با استفاده از مواد هوشمند اخیرا مورد تحقیق و بررسی قرار گرفته است. در مراجع گوناگون در بین مواد هوشمند، مواد پیزوالکتریک جهت استفاده برای سنسور و محرک جزو بهترین مواد معرفی شده است که دلیل آن نیز خواص منحصر به فرد این مواد است. استفاده نخستین از مواد پیزوالکتریک به سال 1880 برمی گردد زمانی که برادران کوری اثر مستقیم این مواد را کشف کردند.
مواد تابعی در تحقیقات گستردهای در سالهای بین 1990 تاکنون مورد بررسی قرار گرفته است. علت این تحقیقات گسترده اینست که، اگرچه تا حدودی مشابه مواد مرکب رفتار میکند ، اما در واقعیت تفاوت زیادی بین این دو ماده وجود دارد و در اصل میتوان مواد تابعی را نوع جدیدی از مواد مرکب در نظر گرفت که خواص آن به صورت لایهای تغییر نمیکند بلکه بصورت کاملاً یکنواخت تغییر مینماید. یکی از ویژگیهای مهم این مواد اینست که، در محیط هایی که تحت گرادیان حرارتی بالایی قرار دارند استفاده از این ماده باعث جلوگیری از بوجود آمدن تمرکز تنش میشود. علت آن نیز اینست که از آنجا که این مواد معمولا از ترکیب دو ماده تشکیل میشود که یکی از این مواد از دسته سرامیکها و دیگری از دسته فلزها میباشد، هم بدلیل ضریب هدایت مناسب در برابر حرارت میتواند مقاومت کند و هم بدلیل داشتن مدل الاستیسیته مناسب میتواند در مقابل بارهای مکانیکی پاسخ مناسبی را ارائه دهد.
درپژوهش حاضر، با توجه به خواص منحصر به فرد مواد تابعی و همچنین قابلیت پیزوالکتریک جهت استفاده برای کنترل کمانش ، به بررسی کمانش حرارتی تیر تشکیل شده از مواد تابعی با استفاده از لایه های محرک پیزوالکتریک، تحت بار حرارتی و الکتریکی مورد توجه قرار گرفته است.

دانلود مقاله و پایان نامه

 

فصل اول: کلیات
1-1) هدف
در این پژوهش اختلاف دمای بحرانی کمانش برای تیر تابعی محاسبه شده و سپس با استفاده از اعمال ولتاژ به لایه های پیزوالکتریک ، دمای بحرانی کمانش افزایش یافته و کمانش تیر به تعویق می افتد.
2-1) پیشینه تحقیق
هی و همکاران یک فرمول بندی المان محدود بر مبنای تئوری صفحات کلاسیک لایه ای برای کنترل شکل و ارتعاشات صفحات FGM شامل سنسور و محرک پیزوالکتریک ارائه دادند. در این مدل الگوریتم بازخورد جهت کنترل پاسخ دینامیکی و استاتیکی مورد استفاده قرار گرفته است. خصوصیات صفحه FGM در جهت ضخامت آن مطابق با توزیع توانی کسر حجمی بوده است. نتایج تحلیل استاتیکی بر حسب خیز صفحه میانی نشان دهنده آثار کنترلی لایه های پیزوالکتریک می باشد.
لین و همکاران یک تحلیل پا یداری دینامیک روی تیر متشکل از ماده مرکب و لایه های پیزوالکتریک انجام دادند، در این تحقیق یک تیر لاغر لایه ای مرکب با لایه های پیزوالکتریک که تحت بار فشاری نوسانی محوری قرار دارد در نظر گرفته شده است و پایداری دینامیکی تیر مورد بررسی قرار گرفته است هر دو لا یه بالایی و پایینی پیزوالکتریک به عنوان محرک در نظر گرفته شده اند این تیر در دو انتها مقید شده و لایه های پیزو الکتریک محرک تنشهای صفحه ای القا می کنند و بر رفتار دینامیکی تیر اثر می گذارند. هنگامی که ولتاژ اعمالی در لایه های پیزوالکتریک محرک منفی است نیر وی پیزوالکتریک کششی می باشد. در این پژوهش ولتاژهای یکسان به هر دو لایه محرک اعمال شده است . پایداری دینامیکی تیر نیز وقتی که لایه پیزوالکتریک بالایی به عنوان محرک و لایه پایینی به عنوان حسگر عمل می کند مورد بررسی قرار گرفته است.
ماتیو و همکاران رفتار استاتیکی یک تیر طره ای که با تکه های محرک پیزوالکتریک تحریک می شود را بوسیله مدل اجزای محدود مورد بررسی قرار دادند و همین بررسی را بصورت تجربی روی تیر مدل بوسیله اعمال جریان مستقیم به تکه های پیزوالکتریک انجام دادند. تیر مورد بررسی همگن و از جنس آلومینیوم می باشد. نتایج حاکی از توافق بین داده های مدل اجزای محدود و مدل تجربی برای ولتاژهای پایین (کمتر از 100 ولت) می باشد. برای توافق در ولتاژهای بالاتر می بایست شکل غیر خطی ثابت پیزوالکتریک برای مدل اجزای محدود در نظر گرفته شود. ولتاژهای اعمالی در این مطالعه زیر 225 ولت می باشد.
شن روی پاسخ غیر خطی خمش صفحات تابعی که تحت بارهای عرضی و حرارتی قرار دارند مطالعه نموده است. این مطالعه روی صفحات مستطیلی تابعی با تکیه گاه ساده که تحت یک بار عرضی یکنواخت یا سینوسی و محیط حرارتی قرار دارند انجام شده، توزیع توانی مطابق کسر حجمی برای خصوصیات مواد در جهت ضخامت در نظر گرفته شده است، معادلات حاکم برای صفحه تابعی بر مبنای تئوری تغییر شکل برشی مرتبه بالاتر ردی در نظر گرفته شده است، یک تکنیک ترکیبی گالرکین و اغتشاشات برای تعیین نمودارهای نیرو- جابجایی و نیرو ممان خمشی بکار گرفته شده است.
جواهری و اسلامی روی کمانش حرارتی صفحه تابعی مطالعه نمودند، همچنین مطالعاتی روی کمانش این صفحات تحت بار گذاری فشاری صفحه ای و بارگذاری حرارتی بر مبنای تئوری مرتبه بالا انجام دادند.

پایان نامه ارشد مهندسی مکانیک طراحی کاربردی: تحلیل المان محدود تیر اف.جی.ام با فرض اویلر

:
اخیرا در علم روز، مواد اف.جی.ام (functionally graded materials) از اهمیت بسزایی برخوردار گردیده اند. این مواد معمولا در سازه در راستای ضخامت خود تحت تابعی تغییر جنس دارند. این مواد در سال 1988 در ژاپن ساخت و به نوعی کشف گردیدند. برای اولین بار در سال 1993 در هنگام نیاز به موادی با استحکام بسیار بالا در برابر حرارت، فردی به نام کویزومی این مواد را برای سازه های فضایی پیشنهاد داد. در سازه های کامپوزیتی تغییر ناگهانی خصوصیات مواد باعث ایجاد تنش های سنگین برشی در میان لایه ها می گردد و این موضوع در مواد اف.جی.ام با تغییر ملایم جنس ماده تحت تابع تعیین شده تا حد چشمگیری تقلیل می یابد و در این شرایط اف.جی.ام از اهمیت ویژه ای برخوردار می گردد.
یکی دیگر از موادی که از اهمیت ویژه ای برخوردار بوده و دارای خصوصیات ذاتی خاصی می باشد، پیزوالکتریک است. این مواد تحت تاثیر

دانلود مقاله و پایان نامه

 میدان الکتریکی دچار تغییر اندازه می گردند و اگر این مواد در سازه به صورت لایه های کامپوزیتی استفاده گردند به جای تغییر اندازه باعث تولید نیرو می گردند. اگر این مواد را تحت میدان الکتریکی قرار داده و از نیروی تولید شده توسط آنها استفاده گردد نام آن actuator (دقیق کننده) می باشد و اگر در عکس این مسیر از آن استفاده گردد و به آن نیرویی وارد گردد که باعث تغییر شکل آن گردد و از اختلاف پتانسیل ایجاد شده استفاده گردد، در این حالت نام آن sensor (سنسور) می باشد. مواد پیزوالکتریک دارای گستره وسیعی می باشند و مواد مختلف با خصوصیات متفاوتی را دارا هستند.

فصل اول: کلیات
1-1) هدف
هدف اصلی که در این پایان نامه دنبال شده است تحلیل یک تیر تحت بار دینامیکی مکانیکی توسط المان محدود است. طبیعتا به دلیل استفاده از روش المان محدود و حجم بالای محاسبات از نرم افزار کامپیوتری استفاده گردیده است. نرم افزار مورد استفاده برای این تیر MATLAB می باشد. تیر تحت بررسی از نوع FGM بوده و در سطح بالایی تیر یک لایه ماده پیزوالکتریک به عنوان actuator تعبیه گردیده است و در نتیجه تیر تحت میدان الکتریکی، تحت نیروی پیزوالکتریک قرار می گیرد. در اصطلاح به چنین تیری، تیر PIEZO FGM گفته می شود. از سختی لایه پیزوالکتریک به دلیل ضخامت پایین آن صرفنظر گردیده است و تنها نیروی حاصله تحت میدان الکتریکی مورد بررسی قرار می گیرد.
جهت تحلیل تیر پس از فرمول بندی های اصلی ریاضی از المان محدود (finite element) برای مدلسازی تیر استفاده گردیده است. المان های مورد استفاده جهت به دست آوردن دقت کافی محاسبات، المان های چهار نقطه ای  continuos beam element C می باشند. در این نوع المان جابجایی و شیب دو سر تیر نامعلوم می باشد و تابع مدلسازی المان آن (shape function) درجه 3 می باشد. حل تیر با فرض اویلر انجام گرفته است و جابجایی های افقی و عمودی برای هر نود (node) در نظر گرفته شده است و هر node دارای دو درجه آزادی می باشد. برای مدلسازی FGM تیر از توابع توانی استفاده گردیده است.
تیر مورد بررسی تحت نیروی مکانیکی دینامیکی و میدان الکتریکی ثابت به طور همزمان قرار دارد. برای تحلیل تاثیر نیروی حاصل از میدان الکتریکی بر روی تیر از قوانین بنیادین مربوط به پیزوالکتریک (constitutive relations) استفاده گردیده است. در اولین مرحله از اصل همیلتون (Hamilton’s principle) و برای تحلیل اثر دینامیکی نیرو از روش نیومارک (Newmark) برایوردحل استفاده می گردد که اصولا نسبت به باقی روش ها از سادگی و دقت مناسبی برخوردار می باشد.
نرم افزار ارائه شده قابلیت پذیرفتن ورودی حالات مختلف تیر برای شرایط مرزی متفاوت را دارا می باشد و جواب های آن برای بررسی صحت، با مقالات بین المللی مقایسه گردیده است.
نتایج دینامیکی نرم افزار از طریق روش marching through time و رسیدن به نقطه عطف یا converge به دست آمده است.
نمای کلی تیر در صفحه بعد نمایش داده شده است.
در تیر از استحکام لایه پیزوالکتریک به دلیل ضخامت پایین آن صرفنظر گردیده است و تنها نیروی ایجاد شده تحت میدان الکتریکی آن مورد بررسی قرار می گیرد.

سمینار ارشد رشته مکانیک تبدیل انرژی: تعیین فاکتورهای موثر در اتلافات برودتی سقف و برآورد میزان کاهش بار برودتی

:
جرم های ذخیره حرارت در فضای مسکونی موجب تأخیر در افزایش دما در این فضا می شود و در شب با تهویه طبیعی یا حتی مکانیکی هنگامی که پیک بار وجود ندارد، می توان آن را خنک نمود.
بالا بودن جرم دیوارها در بنای عالی قاپو (شکل 1-1 پیوست) موجب کاهش انتقال حرارت از طریق هدایت به فضای داخل ساختمان می شود و هم چنین باعث بالا بودن ظرفیت نگهداری هوای سرد شب در آن می گردد. افزایش سطوح داخلی موجب تبادل حرارت بهتر دیوارها از طریق همرفت با فضای داخل شده و این نیز سرعت افزایش دمای داخل را کاهش می دهد. در شب با تهویه طبیعی اجرام فوق با سرعت بیشتری خنک شده و تغییرات دما در شبانه روز در فضای داخلی به طور قابل ملاحظه ای کاهش می یابد. به این نوع سیستم، سیستم کنت رل و تأخیر در حرارت ورودی گفته می شود.
در این پروژه سعی بر آن شده تا سقف های گنبدی از جنبه های مختلف بررسی گردد. کلاً سقف های انحنادار را می توان به سقف های گنبدی و قوسی تقسیم بندی نمود. سقف های قوسی به سقف هایی گفته می شود که در یک جهت انحنا دارند و در ج هت دیگر خطی هستند .این سقفها اگر در راستای جهتی که خطی هستند، به شکل قوس و نمیدایره دربیایند، به سقف های گنبدی شکل شبیه تر می شوند. این نوع سقف ها بیشتر برای فضاهایی که مستطیل شکل هستند مناسب تر می باشد. از مهمترین ویژگی های این نوع سقف ها می

پایان نامه

 توان به کمترین تنش کششی که در آن ها به وجود می آید، نام برد که حتی از موادی مانند گل، آجر، سنگ و موادی از این قبیل که تحمل خمش را ندارند، استفاده نمود.

فصل اول
ی بر فعالیتهای انجام شده
سقف های گنبدی خود نیز انواع مختلفی دارند، مانند گنبدی یک لایه، کروی و گنبدی دولایه. از آنجایی که سقف های گنبدی سطح بیشتری در فضای خارج خود دارند، تبادل حرارت بهتری انجام می دهند و کمتر گرم می شوند. مصالحی که برای ساختن این نوع سقف به کار می رود در ابتدا خشت بود، سپس از آجر که به طور معمول به ضخامت 1-2cm روی آن از کاه گل پوشیده می شود استفاده می شده است . وجود کاه گل موجب جلوگیری از نفوذ باران بوده و مانند عایقی در برابر گرما عمل می کند. امروزه نیز این نوع سقف ها گاهاً در انبارها و کارگاهها و هم چنین برای ساخت سقف نیروگاههای اتمی و بعضی اماکن دیگر مورد استفاده واقع می شود.
سقف های گنبدی در مقایسه با سقف های تخت دارای تغییرات فشار بیشتری روی گنبد خود به خصوص در رأس آن می باشند. ه مچنین سرعت در بالای سقف گنبدی افزایش بیشتری پیدا کرده و در ناحیه پشت گنبد وجود تلاطم را خواهیم داشت اما هم د ر سقف های گنبدی و هم تخت شاهد تغییرات فشار در جلو و پشت ساختمان می باشیم.
تاکنون محققان بسیاری همچون تانگ، پیلموتر، نهار تحقیقات بسیاری درباره انواع سقف ها در مناطق مختلف براساس شرایط اقلیمی و جوی منطقه های گرم و خشک یا معتدل و مرطوب یا کوهستانی انجام داده اند. از آنجایی که سقف یکی از بخش های مهم ساختمان است. ساختار هندسی آن تأثیر عمده ای در مصرف انرژی، کاهش برودت و آسایش حرارتی دارد و از آنجایی که سقف در طول روز در معرض تابش خورشید می باشد، حرارت زیادی را وارد ساختمان می کند. لذا جهت قرار گرفتن ساختمان (شرق  غرب یا شمال  جنوب) مهم می باشد.
در طی سالیان گذشته استفاده زیادی از این نوع سقف ها بسته به شرایط اقلیمی، آداب و رسوم منطقه ای و نوع ساختمان شده است .ساختمان های مسکونی همانند خانه های عربی، اسکیموها، ساختمان های دولتی یا ساختمان های مذهبی به خصوص کلیساها و مساجد از این قبیل می باشند.
طبق بررسی های انجام شده در مناطقی با آب و هوای گرم و خشک سقف های قوسی یا گنبدی دمای داخل را در فصل زمستان کاهش می دهند و دلیل آن را زیاد بودن انعکاس تابشی این نوع سقف ها بیان می کنند که باعث کاسته شدن فشار حرا رتی ورودی به ساختمان می گردد. مبنای سنجیدن برهم کنش بین آب و هوای طراحی و هر نوع سقفی در مقایسه با سقف تخت را می توان جذب، انعکاس و پخش تابش از خورشید و میزان شار حرارتی از طریق جابه جایی با توجه به میزان ضریب انتقال هدایت سقف و عایق به کار رفته در آن در ن ظر گرفت. الجیای و فلیسی بیان کردند که سقف گنبدی اثر شار تابشی را در اطراف ساختمان کم می کند و دمای سقف کاهش می یابد و پخش تابش از سطح سقف و انتقال حرارت جابه جایی با محیط اطراف موجب کاسته شدن دمای سقف می شود. لایه بندی حرارتی هوای زیر سقف گنبدی یا قوس ی به گونه ای است که هوای گرم شده در زیر سقف قرار گرفته و به عنوان عایق عمل می کند. از آنجایی که دمای محیط خارج اغلب بالاتر از هوای محیط داخل ساختمان در طول روز است، بنابراین حرارت بیشتری توسط جابه جایی به داخل ساختمان از طریق سقف ها انتقال می یابد.

پایان نامه ارشد رشته مکانیک تبدیل انرژی: شبیه سازی عددی جریان لغزشی آرام در میکروکانال های با مقطع ذوزنقه ای


توانایی ساخت ابزارهای کوچک در حدود میکرون (MEMS) بهانه ای جدید برای تحقیقات گسترده علمی شده است و آهنگ رشد مقالات علمی با ایده های نو را شتاب داده است. حوزه سیالاتی (MEMS) شامل طراحی و ساخت ابزارهایی برای انتقال ماهرانه و هدفمند سیالات است. مطالعات علمی این حوزه تحت نام میکروسیالات انجام می شود و در این میان میکرو کانال ها آتش علاقه به مکانیک سیالات کلاسیک را مجددا شعله ور ساخته اند . به طور کلی کانال هایی با قطر هیدرولیکی بین 1 تا 100 میکرومتر را میکروکانال می نامند و از آن ها به منظورهای مختلفی نظیر انتقال حرارت، انتقال گونه های جرمی و طراحی لایه های سطحی در ابزار (MEMS) استفاده می شود.
استفاده از سیستم های میکروسیالی برای کنترل حجم های کوچک سیال، فواید بسیاری را در صنایع مهندسی شیمی و بیوشیمی دارد. تولیدات میکروسیالی پیشرفته شامل مبدل های حرارتی مینیاتوری برای خنک کردن سیکل های مرکب، میکرو راکتورها برای تولید مقادیر کم مواد خطرناك یا گران، سنسورهای بیوشیمیایی lab-on-a-chip که آزمایشات بیولوژیک پیچیده روی نمونه های نانو لیتری انجام می دهند، سیستم های کروماتوگرافی (رنگ نگاری) گاز قابل حل برای یافتن منابع آلوده کننده هوا می باشند. وجه مشترك بین این مثال ها نیاز به حرکت دادن سیال در وسیله به صورت کنترل شده است.

پایان نامه

 

فصل اول: کلیات
1-1) آشنایی با میکروکانال ها
تکنولوژی میکرو ماشین کاری که در اواخر سال 1980 به وجود آمده، توانایی تولید سنسورها و فعال کننده هایی در ابعاد میکرون را دارد. این میکرو مبدل ها (میکرو ترانس ها) می توانند با سیگنال های مناسب و شدت جریان یکی شده تا میکرو سیستم های الکتریکی – مکانیکی را به وجود آورند. که می توانند توزیع زمان حقیقی را ایجاد کنند.
این قابلیت یک نظریه جدید را برای تحقیقات مربوط به کنترل جریان، ایجاد می کند. از سوی دیگر، اثرات سطحی، بر جریان سیال میان این وسایل میکرو مکانیکی غالب می شود. که این امر به خاطر، بزرگی نسبت سطح به حجم در شکل گیری ابعاد میکرون می باشد.
ما نیاز به آزمایش دوباره نیروهای سطحی در معادلۀ مومنتوم داریم . به علت کوچک بود ن شان، گاز در اعداد نادسن بالا جریان می یابد و بنابراین شرایط مرزی نیاز به تغییرات دارد. به علاوه با ایجاد این تکنولوژی، این سیستم ها همچنین می توانند، زمینه ساز اصلی برای تحقیقات علم جریان باشند.
در طول دهه اخیر، تکنولوژی میکروماشین کاری برای ساختن اجزاء مکانیکی در ابعاد میکرون، در دسترس است. میکرو ماشین ها نقش مهمی در بیشتر علوم داشته اند (نظیر بیولوژی، پزشکی، اپتیک، علوم فضا و مهندسی برق و مکانیک) که ما در این تحقیق، بحث خود را به آثار انتقال جریان و به طور ویژه روی دینانیک سیالات، محدود می کنیم.
این زمینه جدید فقط مبدل های کوچک برای حس کردن و کارکرد در ی ک محدوده که ما قبلاً آزمایش نکرده ایم را ایجاد نمی کند بلکه به ما این امکان را می دهد که، وارد محیطی بشویم که در آن اثرات سطحی بیشترین آثار را دارد. شکل (1-1) تصویر یک موتور محرك الکترواستاتیکی توسط یک میکروسکوپ الکتریکی را نشان می دهد.
این وسیله بهانه ای بر ای شروع زمینه میکروماشین ها شد . یک ساختار گرفته شده از مفهوم میکروموتور که در نهایت منجر به شکل گیری حسگر کیسه هوا (ایربگ) شد. باعث کاهش تلفات ناشی از تصادفات اتومبیل شد و امروزه در اکثر ماشین ها به کار می رود. در طول دوره تکامل میکروموتور، مشخص شد که نیروی اصطکاك بین روتور و لایۀ زیرین، تابعی از سطح تماس است. این نتیجه از قانون سنتی اصطکاك گرفته شده است. (f=uN) که می گوید، نیروی اصطکاك به طور خطی فقط به نیروی عمودی سطح N بستگی دارد. در مورد میکروموتور، نیروی سطحی بی ن روتور و لایه زیری ن، بیشتر نیروی اصطکاك را تشکیل می دهند. با این حال قانون قدیمی اصطکاك، شرایطی را بیان می کند که نیروی وارد بر جسم به سطح تماس بستگی ندارد.انحرافات از دانش مرسوم معمولاً در دنیای میکرو یافت می شود.
این امر، عرصه میکروماشین ها به عنوان یک تکنولوژی تا مرز ایجاد یک دانش جدید را فراهم می کند.
از فرایند میکرو ماشین کاری در لیتوگرافی (چاپ روی سنگ) برای ظاهر کردن الگوهای طراحی شده استفاده می شود. بخش اضافی سپس کنار گذاشته می شود . این روش ها مشابه روش استفاده شده در ساخت یک مدار فشرده (IC) است اما با یک تفاوت: ساختاره ای ساده و سه بعدی معمولاً به علت طبیعت اجزای مکانیکی ویژگی های رایجی هستند . تکنولوژی های تولید گوناگون مانند میکروماشین کاری بدنه جسم، میکروماشین کاری سطحی و لیگا (برگرفته از عبارت آلمانی LIGA) برای ساخت میکرو ماشین های مختلف گسترش یافته اند.

سمینار ارشد مکانیک طراحی کاربردی: تحلیل ترموالاستیسیته کوپل پوسته استوانه ای FGM تحت شوک حرارت و فشار


مواد هدفمد (FGM) کاربرد وسیعی در علم مهندسی مکانیک دارد که مقاومت بالای حرارتی از مهمترین خصوصیت آن می باشد. مواد هدفمند به گونه ای ساخته می شوند که خصوصیات مکانیکی و حرارتی ماده از یک سطح تا سطح دیگر ضخامت جسم، به طور پیوسته و تدریجی تغییر کند. این تغییرات می تواند به تبعیت از تابع توانی برحسب کسر حجمی دو ماده تشکیل دهنده FGM فرض شود. بدین صورت که کسر حجمی مواد تشکیل دهنده FGM در راستای یکی از ابعاد هندسی تغییر کند. از مواد هدفمند فلز – سرامیک، به دلیل مقاومت حرارت بالای سرامیک و سختی بالای فلز، در شرایط مادی فوق العاده زیاد و یا شرایط شوک شدید حرارتی استفاده می شود. این مواد به دلیل ویژگی های منحصر به فرد قابلیت استفاده را در هواپیما و فضاپیما دارند. افزایش کاربرد FGM در صنعت، بررسی رفتار این ماده را تحت تاثیر نیروهای مکانیکی و حرارتی را در پی داشته است.
برای حل مسائل ترموالاستیسیته در حالت گذرا، ابتدا میدان دما را از حل معادله انرژی به دست آورده، و سپس دستگاه معادلات حرکت را با جایگزینی ترم دما از حل معادله انرژی حل می کنند. البته اعتبار این حل بستگی به اندازه ترم کوپلینگ حرارتی موجود در معادله انرژی دارد، به گونه ای که در شرایط عدم وجود شوک، از این ترم صرفنظر می کنند. هرگاه فرکانس اغتشاشات حرارتی اعمال شده به جسم با فرکانس طبیعی آن جسم برابر گردد (شوک حرارتی)، میدان های حرارتی و تنش، از حل دستگاه معادلات متشکل از معادلات حرکت و

پایان نامه

 معادله انرژی به طور همزمان حاصل خواهد شد. پیچیدگی دستگاه معادلات حاکم بر جسم راهی جز حل عددی باقی نمی گذارد. از آنجایی که مدت زمان وقوع شوک فوق العاده کوچک است، حل عددی در بعد زمان را نیز پیچیده می کند. لذا این پیچیدگی با استفاده از تکنیک خاصی در هنگام بی بعدسازی معادلات رفع می شود.

فصل اول: کلیات مواد هدفمند
1-1- فیزیک مواد هدفمند
طبق تعریف مواد هدفمند یا FGM موادی هستند که برای به وجود آوردن تغییرات تدریجی در مشخصه های اجزاء ریزساختارها یا ترکیبات به کار می روند. مهمترین کاربرد FGM بهبود مشخصه های مکانیکی و ترمودینامیکی اجزاء به طرق زیر می باشد:
– اندازه تنش های حرارتی می تواند کمینه گردد، همچنین نواحی بحرانی که بیشینه تنش حرارتی در آن قسمت به وجود می آید، می تواند کنترل شود.
– شروع تسلیم پلاستیک و شکست برای یک بارگذاری ترمودینامیکی می تواند با تاخیر اتفاق بیافتد.
– جلوگیری از تمرکز تنش های شدید در محل تقاطع لبه ها و نقاط تکین.
– مقاومت باندهای واسط بین جامدات غیرهمگن مانند فلز و سرامیک با کاهش پیوسته ترکیب یا جهت دار کردن تغییر خواص مکانیکی می تواند افزایش پیدا کند.
– نیروی پیشران برای رشد ترک می تواند با انتخاب مناسب درجه بندی خواص مکانیکی کاهش پیدا کند.
– قرارگیری پوشش سخت روی نمونه فرعی با جنس نرم به وسیله درجه بندی پیوسته خواص مکانیکی و جهت دار کردن تغییر خواص مواد می تواند آسان تر شود.
– درجه بندی ترکیب در لایه های سطح می تواند میدان های تکین ناشی از بریدگی و فرورفتگی های نوک تیز را از بین برده و مشخصه های تغییر شکل پلاستیک اطراف فرورفتگی ها را تغییر دهد.
2-1- تاریخچه مواد هدفمند
برای اولین بار در سال 1972، Bever و Duwez، ایده ترکیب دو فاز مختلف را با تغییر در نحوه آرایش و ترتیب هرکدام از فازها در هر لایه در جهت بهبود خواص مکانیکی مطرح کردند. ایده آنها عموما مربوط به ضعف مواد مرکب در بسیاری از کاربردها بود که Goetzel در دهه های 1950 و 1960 با تحقیقات گسترده ای که روی مواد مرکب انجام داده بود، آنها را نشان داد. در اواسط دهه 1980 برای اولین بار در کشور ژاپن نام علمی FGm به این مواد داده شد و عصر جدیدی برای تحقیقات گسترده روی این مواد گشوده گشت. در آن سال در ژاپن یک گروه دولتی پیش بینی کردند که درگیری شدید ژاپن در تحقیقات فضایی و رشد این تحقیقات نشان داده است که پیشرفت ژاپن در این زمینه قویا به تولید مواد جدید وابسته می باشد. سه تن از دانشمندان به نام های Niino، Koizumi و Hirai تحقیقات خود را روی پروژه هواپیمایی فضایی آغاز کردند. تحقیقات این سه تن نشان داد که اجزای سازه های به کار رفته در بدنه هواپیمای فضایی تحت بارهای بسیار شدید قرار می گیرند و بنابراین در ترکیب و درجه بندی ریزساختارهای سازه های بدنه بایستی به دو مورد توجه شود. اولا، از مواد موجود و در دسترس، اجزای سازه ای تولید گردند که بهترین استفاده را در اکثریت اهداف صنعتی داشته باشند. ثانیا، جلوگیری از تمرکز تنش یا کرنشی که ناشی از به وجود آمدن سطوح نوک تیز به دلیل جدا بودن مواد مختلف می باشد. نتیجه این یافته ها موجب گشت که در سال 1987 در کشور ژاپن سازمانی متشکل از دانشمندان تاسیس شد و بودجه تحقیقاتی بسیار زیادی به آن اختصاص پیدا کرد و کار آن تحقیقات گسترده در ارتباط با FGM بود. این سازمان تحقیقات خود را روی اجزایی که یک وجه آنها سرد شده اند و وجه دیگرشان در محیط بسیار داغ نگهداری می شوند معطوف نمود. کمیته علمی این سازمان مأمور طراحی و ارزیابی سیستم های مرکب Inorganic گشت که نهایتا به سمت فلزات و سرامیک ها هدایت شدند. برای سطح داغ، دما حدود 2000 درجه کلوین در محیطی اکسیدکننده در نظر گرفته شد و آزمایش ها سرامیک را ماده مناسبی برای سطح داغ نشان داد. سطح سردتر در دمای 1000 درجه کلوین قرار داشت و بدینسان مقاومت و سختی و هدایت حرارتی مواد انتخاب شدند. بین دو سطح داغ و سردتر را با مخلوطی از سرامیک و فلز با درصدهای مشخص پر کردند که این عمل توسط روش متالوژی پودر انجام شد.

 

update your browser!